Die Holde im Gras, reloaded

14. November 2006, 20:57
posten

Software, basierend auf partiellen Differentialgleichungen, soll mittelalterliche Fresken rekonstruieren

Das Wolfgang-Pauli-Institut (WPI) feilt mit mathematischen Methoden an Analyse von Bildern. Eine Software, basierend auf partiellen Differentialgleichungen, soll mittelalterliche Fresken rekonstruieren und helfen, moderne Lichtinstallationen zu morphen.


Die Holde liegt im Gras und genießt, dass er sich an ihrem Dekolleté zu schaffen macht, während er ihr nacktes Knie liebkost. Sinnenfreudige Szenen bestimmen den Neidhart- Bilderzyklus. Der Tuchhändler Menschein ließ sich anno 1398 Szenen aus der deftigen Dichtung eines mittelalterlichen Popstars, des Wiener Minnesängers Neidhart von Reuental, an die Wand malen. Zu besichtigen sind sie im ersten Stock auf der Tuchlauben 19. Leopold Friedrich Pfeiffer, Kirchmeister des Doms St. Stephan, bereitete 1715 dem Treiben ein Ende und ließ die Schweinereien unter einer Putzschicht verschwinden. 1979 wurden die Malereien wiederentdeckt und seither als älteste profane Wandfresken Wiens ausgestellt. Eine Seite des Saales ist bereits retuschiert, wobei die Fachleute auf ihre Erfahrung mit Epoche, historischer Maltechnik und verwendeten Pigmenten zurückgreifen konnten.

Auf der anderen Saalseite stören (noch) weiße Flecken das Bild, denn über die Jahrhunderte ist viel Information verloren gegangen. Partielle Differentialgleichungen, verpackt in Software, sollen künftig erweiterte Entscheidungsgrundlagen für die Wiederherstellung liefern. Dazu werden die Fresken vom Projektteam des Wolfgang-Pauli-Instituts (WPI) zunächst quadratdezimeterweise fotografiert. "Wir wollen die Umgebungsinformation der weißen Flecken nutzen, um mögliche Varianten der Vervollständigung vorzuschlagen", vereinfacht Projektleiter Peter Markowich das Vorgehen. Kanten des Freskos, Ränder und Übergänge sind für die Rekonstruktion überschaubarer Fehlstellen besonders relevant, ergänzen kann die Software allerdings nichts: Wo es nur grauen Verputz gibt, ist auch für den Mathematiker "null Information" zu finden. Das Tool soll eine zusätzliche wissenschaftliche Grundlage für die Restaurierung schaffen und vorhandene Informationen präzise aufbereiten. "Wie beim Eisberg", führt Markowich weiter aus, "handelt es sich um so genannte Randwertprobleme": In der Arktis ist die Grenzschicht vom Eis zum umgebenden Wasser Teil des Problems, bei den Fresken der Übergang vom Motiv zum Hintergrund.

Partner in dem Projekt ist Wolfgang Baatz von der Akademie der Bildenden Künste. Der Restaurator und technische Chemiker bemüht sich, "dem Betrachter zu vermitteln, was vom Kunstwerk noch erhalten ist. Wir malen bei der Retusche nichts Neues, denn das wäre Verfälschung. Wir nehmen optisch weg, was stört." Tratteggio heißt die Technik, mit der eine Seite des Saales bereits bearbeitet wurde, hauptsächlich durch Studierende unter Anleitung von Claudia Riff-Podgorschek und Renáta Burszan. Die feinen Pinselstriche sind zu sehen und so bleibt erkennbar, was ergänzt wurde. Baatz will Probleme und Bedürfnisse der Restauratoren in die Welt der Mathematik übersetzen helfen. In Zukunft werden Besucher vielleicht virtuelle Varianten der Fresken abrufen können, ohne dass am Original experimentiert werden muss.

Auch das Johann Radon Institute for Computational and Applied Mathematics (RICAM) in Linz liefert Know-how: Projektleiter Massimo Fornasier hat bereits an den Mantegna-Fresken in Padua Erfahrungen mit virtueller Rekonstruktion gesammelt. Dort hatte ein Bombentreffer die Wandmalereien in Splitter zerlegt, die eingescannt und nach Vorlage alter Fotografien wieder zusammengesetzt werden sollen.

Der Wiener Wissenschafts-, Forschungs- und Technologiefonds (WWTF) fördert dieses Projekt mit mathematischem Mehrwert: 400.000 Euro gehen in den nächsten vier Jahren an die Fakultät für Mathematik der Uni Wien. Ziel der WWTF-Ausschreibung "Fünf Sinne" war - neben Exzellenz, Sichtbarkeit, Verwertbarkeit und Interdisziplinarität - die Unterstützung der Creative Industries am Standort Wien. Künstlerin Brigitte Kowanz und ihr Partner Michael Kostner rechnen ebenfalls mit der mathematischen Bildverarbeitung, um Konzept-, Prozess- und Entwurfsstrukturen ihrer Lichtinstallationen ineinander zu verweben und interdisziplinär zu gestalten. "Wir brauchen Visualisierungen um Projekte vorzustellen, wobei Licht und Schatten extrem schwierig darzustellen sind", betont Brigitte Kowanz, die sich auch ihre Studenten an der Angewandten und Architekten als künftige Nutzer vorstellen kann.

Das Wolfgang-Pauli-Institut (WPI) versammelt renommierte Wissenschafter - darunter viele Wittgenstein-Preisträger -, die unabhängig an Forschungsinstituten arbeiten. Als geballte Geistesgröße zieht der Verein interdisziplinäre Projekte an Land. Zurzeit werden ein EU-Netzwerk und ein FWF-Wissenschaftskolleg zum Thema Differentialgleichungen sowie drei WWTF-Projekte durchgeführt, mit Partnern in Paris, Toulouse, Hamburg und Kreta. Die Kraft der Mathematik liegt für den Präsidenten des WPI, Peter Markowich, in der Abstraktion: "Probleme werden mit abstrakten Mitteln, etwa Differentialgleichungen, behandelt. Von dort kehrt man mit neuen Einsichten zurück, die sich auf das Problem anwenden lassen." Mit der gleichen Mathematik lassen sich so Lösungen für Nanowissenschaften, Plasmaphysik oder eben Bildanalyse finden.

Namenspate ist der Nobelpreisträger Wolfgang Ernst Pauli, Quantenphysiker und fächerübergreifender Denker des vergangenen Jahrhunderts. Der Exil-Wiener war als Perfektionist bekannt und berüchtigt für den Pauli-Effekt: In Gegenwart des genialen Physikers gingen Apparaturen gerne zu Bruch oder versagten den Dienst. Beim ersten Fototermin fielen zum Glück nur die Scheinwerfer aus. (Astrid Kuffner/DER STANDARD, Print-Ausgabe, 15.11. 2006)

  • Das Wolfgang-Pauli-Institut will diese Fresken mit komplexen Computerprogrammen rekonstruieren.
    foto: pauli institut

    Das Wolfgang-Pauli-Institut will diese Fresken mit komplexen Computerprogrammen rekonstruieren.

Share if you care.