Französisches Megaprojekt Iter könnte Milliardengrab werden

22. November 2016, 14:26
500 Postings

In Südfrankreich sollen gewaltige Energiemengen dank Kernfusion entstehen. Vorerst verschlingt die "nukleare Dummheit" Milliarden

In der Provence, zwischen Olivenhainen und Cézanne-Landschaften, wärmt die Sonne auch im November. Nur die gigantische Baustelle will nicht so recht in das malerische Dekor passen. Erdreich vom Volumen der Cheopspyramide wird derzeit von tausend Arbeitern in einer Talmulde planiert. An einer quaderförmigen, 60 Meter hohen Montagehalle erklärt eine Inschrift, was das Ganze soll: "Die Sonnenkraft auf die Erde bringen."

Daneben, oder genauer gesagt ein paar hundert Treppenstufen darunter, auf dem Grund eines riesigen Kraters, wo die Sonne nicht hinkommt, zeigt Baustellenführerin Julie Marcillat um sich: "Wir befinden uns im Herzen eines Projekts, das die Zukunft der Energie sichern kann. Es ist sehr aufregend, dafür tätig zu sein."

Energiegewinnung durch Verschmelzung

Das Projekt heißt Internationaler thermonuklearer Versuchsreaktor (Iter), und die Idee dahinter ist die Kernfusion. Also nicht Kernspaltung, die in den heutigen Atomkraftwerken viel radioaktiven Abfall und Unfälle produziert, sondern das physikalische Gegenteil davon: Energiegewinnung durch die Verschmelzung zweier Atomkerne, genauer gesagt von Deuterium und Tritium zu Helium. "Und Helium können Sie in die Luft ablassen, das ist ungefährlich und auch kein Treibhausgas", meint Marcillat.

Das Problem liegt anderswo, wie die Südfranzösin bereitwillig erklärt: Die beiden Atomkerne vereinen sich nicht freiwillig. Ein Mittel ist die Erhitzung auf mehr als 150 Millionen Grad – heißer als die Sonne. Ziel ist es, die Atomkerne in einem Tunnelring von 15 Meter Durchmesser auf einer geordneten Kreisbewegung zu behalten. Und das, ohne dass sie die Tunnelwände berühren – denn die würden im Nu schmelzen. Ein ausgetüfteltes System von teilweise 16 Meter hohen Magnetspulen soll die Kerne in der Mitte des "Schwimmrings" halten.

Das physikalische Gleichgewicht ist natürlich labil. Eine Katastrophe wie in Tschernobyl oder Fukushima ist trotzdem ausgeschlossen: Die Kernfusion produziert keine Kettenreaktion und müsste bei einem Störfall nicht einmal gestoppt werden – sie bricht von selbst ab. Die Iter-Planer leisteten sich gar den Luxus, die Anlage in einer Erdbebenzone zu bauen, obwohl es in Frankreich genug andere Gebiete gäbe.

Kaum Atommüll

Außerdem soll im Iter sehr wenig Atommüll entstehen: Das in geringen Mengen verwendete Tritium hat eine Halbwertszeit von nur zwölf Jahren, und auch der gelegentliche Ersatz bestrahlter Reaktorwände sorgt für keine großen Abfallmengen. "Atomare Endlager werden damit überflüssig, Evakuierungspläne ebenfalls", meint Neil Mitchell, der britische Leiter der Magnetspulenabteilung bei Iter.

Die Schwierigkeit ist eher technisch: Um die erhitzten Atomkerne im Gleichgewicht und auf Abstand von den Schutzwänden zu halten, ist eine Anlage gewaltigen Ausmaßes nötig. In normal großen Labors ist den Physikern des deutschen Max-Planck-Institutes oder des amerikanischen Rüstungskonzerns Lockheed die Kernfusion noch nie länger als ein paar Minuten gelungen. "Die Entwicklung der Kernfusion überfordert ein einzelnes Land", erklärt Mitchell.

Ewgeni Velikow (81), Doyen der russischen Kernfusionsforschung, erzählt beim Mittagessen in der Iter-Kantine, wie seine Mitarbeiter das Tunnelringmodell Tokamak in den 1960er- und 1970er-Jahren entwickelt hätten. Sie hätten schnell realisiert, dass sie den Bau der Anlage nicht allein stemmen konnten. Deshalb habe der damalige sowjetische Präsident Michail Gorbatschow seinem US-Kollegen Ronald Reagan bei einem Gipfeltreffen 1985 den gemeinsamen Bau eines Versuchsreaktors vorgeschlagen.

Später schloss sich der französische Präsident François Mitterrand an, gefolgt von Euratom (28 europäische Länder inklusive Österreich), dann auch China, Japan, Südkorea und Indien. 2006 gaben sie vereint den Startschuss für den Iter-Bau in Cadarache.

Kostenexplosion

Als Budget waren 5,5 Mrd. Euro veranschlagt. Wenige Jahre später, als in Cadarache noch nicht viel mehr als eine Umzäunung des 180-Hektar-Geländes stand, hatten sich die Kosten bereits verdreifacht. "Schuld waren vor allem Wertberichtigungen und Rohstoffpreise", rechtfertigt sich Laurent Patisson, der technische Bauleiter. Auf der riesigen Baustelle erzählt man sich, die beiden ersten (japanischen) Iter-Chefs hätten die Übersicht über die komplexe internationale Kooperation verloren. Patisson beteuert, heute würden die Ausgaben unter der neuen (französischen) Leitung mit eiserner Hand kontrolliert.

Doch die Kosten – mittlerweile bei fast 20 Milliarden Euro angelangt – hängen von der Bau- und Entwicklungsdauer ab. Vergangene Woche hat der Iter-Aufsichtsrat in Cadarache den Zeitplan festgelegt: 2025 soll erstmals Plasma in den Vakuumring einlaufen, 2035 ein erstes Gramm Deuterium-Tritium. Neue Verzögerungen – und damit höhere Kosten – sind aber nicht auszuschließen, ja sogar wahrscheinlich.

Allein der Transport von bis zu 600 Tonnen schweren Bestandteilen aus Indien, Russland und Japan lässt noch viele Fragen offen – obschon die Franzosen dafür vom Hafen in Marseille aus eine breite, 100 Kilometer lange Straße gebaut bzw. verbreitert haben. Und wohlgemerkt: Iter ist nur ein Versuchsreaktor. Er soll beweisen, dass die Kernfusion bei Eingabe von 70 Megawatt Strom – vor allem zur Erhitzung – fast zehnmal mehr Energie, nämlich 500 Megawatt, produziert. Bis 2050 scheint jede kommerzielle Nutzung ausgeschlossen.

"Milliardenloch"

Die Gegner glauben ohnehin nicht daran. Das sei ein "Milliardenloch der nuklearen Dummheit", moniert Greenpeace. "Das Geld würde besser in die Entwicklung und Produktion erneuerbarer Energien gesteckt als in eine Risikotechnologie mit ungewissem Ergebnis." Der Chefingenieur von Iter, Günter Janeschitz, entgegnet, für die 34 Mitgliedstaaten seien die Iter-Kosten verkraftbar; sie seien geringer als die der internationalen Raumfahrtstation ISS. "Können wir uns leisten, diese neue Energieform nicht zu versuchen?", fragt der Österreicher in seinem Büro mit Blick auf die Provence-Idylle.

Dann projiziert er eine Grafik der deutschen Energieträger im Jahr 2015 an die Wand: Auf Öl und Gas entfallen 55 Prozent, auf Sonne und Wind 3,5 Prozent. "Fossile Brennstoffe werden nie ganz durch die Erneuerbaren ersetzt werden können. Kohle- und Atomkraftwerke sind aber heute unerwünscht. Was bleibt? Die Kernfusion."

Dass ihre Machbarkeit im großen Maßstab noch unbewiesen ist, lässt Janeschitz nicht gelten: "Technisch ist das keine Hexerei. Es hängt vom politischen Willen ab: Mit dem nötigen Kapital ist der Bau eines Fusionsreaktors in zwei Jahrzehnten möglich." Der politische Wille scheint aber nicht überall vorhanden, auch in Österreich nicht.

In Deutschland erforschen Physiker, die als weltweit führend gelten, die Kernfusion zwar seit einem halben Jahrhundert. Doch die grüne Abgeordnete Sylvia Kotting-Uhl forderte im Bundestag 2015 einen Austritt aus Euratom, und Wirtschaftsminister Sigmar Gabriel äußerte eher Verständnis für ihr Anliegen. Er fügte aber an, ein Austritt aus dem EU-Verbund sei völkerrechtlich kaum machbar; sein Ministerium kam in einem Papier zum Schluss, dass sich Deutschland alle Optionen offenhalten solle. (Stefan Brändle aus Cadarache, 22.11.2016)

  • Laurent Patisson, der technische Bauleiter in Cadarache, führt die Kostenexplosion auf hohe Wertberichtigungen und explodierte Rohstoffkosten zurück.
    foto: standard/brändle

    Laurent Patisson, der technische Bauleiter in Cadarache, führt die Kostenexplosion auf hohe Wertberichtigungen und explodierte Rohstoffkosten zurück.

Share if you care.