Prothesen sollen Handbewegungen erlernen

13. September 2016, 14:43
posten

Forscher wollen Prothesen entwickeln, die lebensechtere Bewegungen erlauben

Lausanne – Forscher der Fachhochschule Wallis sammeln Daten über Handbewegungen, die sie für Prothesen-Algorithmen nutzen wollen. Zudem haben Wissenschafter der technisch-naturwissenschaftliche Universität in Lausanne (EPFL – École polytechnique fédérale de Lausanne) eine Hirn-Computer-Schnittstelle entworfen, die lernfähig ist. Das Ziel beider Forscherteams: Prothesen, die lebensechtere Bewegungen erlauben.

Die meisten Handprothesen können nur wenige, eher ruckartige Bewegungen ausführen. Um sie den echten Extremitäten ähnlicher zu machen, setzen Forscher auf maschinelles Lernen: Sie füttern Steuerungs-Algorithmen mit Daten über natürliche Gesten und Handbewegungen.

Henning Müller vom Institut für Wirtschaftsinformatik der Fachhochschule Wallis will dafür die weltweit größte Datenbank von Handbewegungen aufbauen. Ein Artikel in der jüngsten Ausgabe des Magazins "Horizonte" des Schweizer Nationalfonds und der Akademien der Wissenschaften stellte das Projekt vor.

Phantomschmerzen helfen

Insgesamt wurden bislang rund fünfzig Gesten erfasst, die Müller und sein Team bei 78 gesunden und amputierten Personen aufzeichneten. Unterstützt wurden sie dabei von Physiotherapeuten, die regelmäßig mit amputierten Personen arbeiten. Ziel sind Algorithmen, um die "Geschicklichkeit" von Prothesen zu verbessern.

Außerdem wollen die Forscher klarer verstehen, warum manche besser mit ihren Prothesen umgehen können als andere. In früheren Studien konnte Müllers Team bereits feststellen, dass die Bewegungen umso präziser gelingen, je weiter die Amputation des Nutzers zurückliegt und je intensiver er oder sie Phantomschmerzen empfindet. Beides gehe wahrscheinlich auf stärker vernetzte Nerven zurück, heißt es im "Horizonte"-Artikel.

Lernfähige Prothesen

Auf maschinelles Lernen setzt auch die Forschungsgruppe von José del R. Millan an der EPFL, die kürzlich neue Schnittstellen zwischen Gehirn und Computer entwickelt hat. Diese Schnittstellen sollen erlauben, einen Roboterarm durch Gedanken zu steuern. Zudem soll das System lernfähig sein.

"Das Hirn sendet einen spezifischen elektrischen Impuls aus, wenn eine Geste misslingt", erklärte Millan gemäß des "Horizonte"-Artikels. Das Fehlersignal wird als Rückmeldung an den Roboterarm weitergeleitet, der dadurch richtige und falsche Bewegungen unterscheidet und daraus eine Datenbank anlegt. Mit diesem Ansatz lassen sich schneller Ergebnisse erzielen. Sonst müsste der Patient völlig neue motorische Fähigkeiten erlernen", so Millan.

Sein Team wird unter dem Namen "Brain Tweakers" im Oktober am Cybathlon in Zürich teilnehmen – einem internationalen Wettstreit der Prothesen und ähnlicher technischer Hilfsmittel. In sechs Disziplinen soll die Technik dabei auf ihre Alltagstauglichkeit geprüft werden. Die "Brain Tweakers" treten in der Disziplin "Gehirn-Computer-Schnittstellen" gegen 15 andere Teams aus aller Welt an. (APA, sda, 13.9.2016)

Share if you care.