Forscher messen genaue Halbwertszeit von seltenem Eisen-Isotop

7. Februar 2015, 13:37
14 Postings

Eisen-60 erlaubt bessere Bestimmung von Zeitabläufen im Universum

Wien/Canberra - Um astrophysikalische Ereignisse in unserer Milchstraße datieren zu können, verwenden Astronomen im Grunde eine ähnliche Methode wie etwa Paläontologen, die das Alter von Fossilien bestimmen wollen: Sie messen die Verteilung von radioaktiven Isotopen. Im Weltall ist dafür das Isotop Eisen-60 das Mittel der Wahl. Eisen-60 ist ideal dafür geeignet, als astrophysikalische Uhr Informationen über Supernovae, Elementbildung in Sternen und auch über das frühe Sonnensystem zu liefern.

"Eisen-60 erlaubt es uns, die Bildung von chemischen Elementen in massiven Sternen sozusagen 'live' zu verfolgen. Dafür benötigen wir jedoch eine genaue Kenntnis der Halbwertszeit – also der Lebensdauer dieses Isotops", erklärt Anton Wallner von der Universität Wien. Nun ist es dem Physiker und seinen Kollegen von der Australian National University (ANU) und dem Paul-Scherrer-Institut in der Schweiz gelungen, die Halbwertszeit von Eisen-60-Isotops erstmals exakt zu bestimmen. Damit legen sie den Grundstein für eine präzise astronomische Uhr zur Erfassung von Zeitabläufen im Universum.

Rätsel gelöst

Bisher gab es zwei stark voneinander abweichende Werte: Eine Messung aus dem Jahr 1984 besagt, dass die Halbwertszeit des Eisen-60-Isotops 1,5 Millionen Jahre beträgt, während eine Messung aus dem Jahr 2009 eine beinahe doppelt so lange Halbwertszeit ergab. Mit ihren jüngsten Experimenten bestätigen die Forscher nun die Messungen aus dem Jahr 2009 und lösen somit das Rätsel um eine langjährige Unstimmigkeit auf diesem Gebiet. Die genaue Halbwertszeit des radioaktiven Eisens-60 wurde nun auf 2,6 Millionen Jahre festgesetzt. Wallner führt weiter aus: "Durch diese Erkenntnis lässt sich das Isotop nun als präzise kosmische Uhr, also als natürliches Archiv zur Erfassung von Zeitabläufen im Universum, verwenden".

Das Eisen-60-Isotop kommt nicht natürlich auf unserer Erde vor. Es wird hauptsächlich in massereichen Sternen gebildet, die am Ende ihres Lebens als Supernovae explodieren und so radioaktive Elemente im Weltraum verteilen. Aufgrund der charakteristischen Strahlung, die die Isotope während ihres radioaktiven Zerfalls aussenden, kann es seit kurzem mit Satelliten direkt in unserer Milchstraße beobachtet werden. Diese Strahlung liefert Hinweise darauf, wie durch jüngste Supernovae neue Elemente entstanden sind.

"Findet man natürliche Eisen-60-Atome auf der Erde, so müssen diese aus erdnahen kosmischen Explosionen der letzten paar Millionen Jahre stammen. Derartige Ereignisse könnten Änderungen des Klimas auf der Erde bewirkt haben, erklärt Walter Kutschera vom VERA-Labor der Universität Wien. "Sogar die Geburt des Sonnensystems vor viereinhalb Milliarden Jahren könnte so ausgelöst worden sein, da man die Zerfallsprodukte von Eisen-60 in Meteoriten nachgewiesen hat."

Atome direkt zählen

Da Eisen-60-Isotope langsam zerfallen, ist es eine Herausforderung ihre Halbwertszeit genau zu messen. Die Wissenschafter aus Österreich, Australien und der Schweiz verwendeten dazu "radioaktiven Abfall" aus einer Beschleunigeranlage des Paul Scherrer Instituts, in der eine ausreichende Menge an künstlich produziertem Eisen-60 enthalten war. Um die geringe Zahl an Atomen in der Probe genau zu bestimmen, nutzten sie eine besonders empfindliche Technik, mit der sich die Atome direkt zählen lassen.

Die Beschleunigeranlagen VERA (Vienna Environmental Research Accelerator) der Universität Wien und das Beschleuniger-Massenspektrometer der Australian National University zählen zu den weltweit sensitivsten Anlagen, um winzigste Spuren von seltenen Elementen nachzuweisen. "Das Besondere an unserer Arbeit ist, dass wir den Gehalt von Eisen-60 relativ zu einem weiteren radioaktiven Eisen-Isotop, nämlich Eisen-55, bestimmen konnten, welches genauer zu messen war", so Wallner über die im Fachjournal "Physical Review Letters" veröffentlichten Ergebnisse. (red, derStandard.at, 7.2.2015)

  • Bei einer Supernova-Explosion wird frisch produziertes Eisen-60 ins interstellare Medium  abgegeben. Das Isotop hilft bei der Datierung astrophysikalischer Ereignisse.
    illu.: esa/m. kornmesser

    Bei einer Supernova-Explosion wird frisch produziertes Eisen-60 ins interstellare Medium abgegeben. Das Isotop hilft bei der Datierung astrophysikalischer Ereignisse.

Share if you care.