"Schwarze Witwe" frisst ihren Begleiter bei schnellem Kreistanz

  • Das ungewöhnliche Pulsarsystem PSR J1311-3430 mit dem ersten Millisekundenpulsar, der allein anhand seiner leuchtturmähnlichen Gammakegel (hier in magenta dargestellt) entdeckt wurde. Das Rekord-Pulsarsystem ist so klein, dass es vollständig in unserer Sonne Platz fände. Die schematische Darstellung zeigt die Sonne, die Umlaufbahn des Begleiters und dessen maximale Größe im korrekten Maßstab; der Pulsar dagegen wurde stark vergrößert.
    vergrößern 600x600
    foto: sdo/aia (sonne), aei

    Das ungewöhnliche Pulsarsystem PSR J1311-3430 mit dem ersten Millisekundenpulsar, der allein anhand seiner leuchtturmähnlichen Gammakegel (hier in magenta dargestellt) entdeckt wurde. Das Rekord-Pulsarsystem ist so klein, dass es vollständig in unserer Sonne Platz fände. Die schematische Darstellung zeigt die Sonne, die Umlaufbahn des Begleiters und dessen maximale Größe im korrekten Maßstab; der Pulsar dagegen wurde stark vergrößert.

Ungewöhnliches System aus einem Millisekunden-Pulsar, der Gammastrahlung aussendet, und einem extrem dichten Begleitstern entdeckt

Ein internationales Astronomenteam ist mithilfe des NASA-Gammateleskops "Fermi" auf ein ungewöhnliches Doppelsternsystem gestoßen, das sich gleich durch mehrere Rekordeigenschaften auszeichnet. Wie die Forscher in der Fachzeitschrift "Science" berichten, frisst eine der beiden Doppelstern-Komponenten, ein schnell rotierender Pulsar, einer "Schwarzen Witwe" gleich seinen Begleitstern, während sie diesen in einem engem Kreistanz umrundet.

Pulsare sind die kompakten Überreste von Explosionen massereicher Sterne. Manche von ihnen drehen sich mehrere hundert Mal innerhalb einer Sekunde um die eigene Achse und schicken dabei Strahlungsbündel ins All. Diese Millisekundenpulsare ließen sich bisher nur durch ihre Radiowellen aufspüren. Nun hat das Forscherteam, darunter Wissenschafter der Universität Innsbruck, erstmals einen Millisekundenpulsar allein anhand seiner gepulsten Gammastrahlung entdeckt.

Millisekundenpulsare sind schwer auszumachen

Schon im Jahr 1994 waren Forscher im Sternbild Zentaur auf eine Quelle intensiver Gammastrahlung gestoßen. Man vermutete zwar, dass ein Pulsar dahinter steckt. Aber erst jetzt hat das Team um Holger Pletsch vom Max-Planck-Institut für Gravitationsphysik das Rätsel gelöst und den Millisekunden-Gammapulsar PSR J1311-3430 als Verursacher identifiziert. Dabei half den Wissenschaftern eine neue Datenanalysemethode, denn die rasend schnell rotierenden Pulsare lassen sich extrem schwer finden.

Um einen Gammapulsar eindeutig nachzuweisen, müssen Astronomen mehrere Eigenschaften des Himmelskörpers sehr genau kennen. Hierzu zählen etwa seine Position, die Drehfrequenz sowie deren zeitliche Änderung. Gehört der Pulsar zu einem Doppelsternsystem, ist es noch komplizierter: Es kommen mindestens drei Bahnparameter hinzu, die ebenfalls bestimmt werden müssen. Im Fall von PSR J1311-3430 hatten Astronomen den Begleitstern - er erhitzt sich durch die Strahlung des Pulsars - bereits mit optischen Methoden beobachtet. Auf diese Weise konnten sie die Bahnparameter des Doppelsternsystems teilweise abschätzen und die Position des Pulsars eingrenzen.

"Wir haben eine besonders effiziente Methode entwickelt, um die Gammadaten des NASA-Satelliten "Fermi" nach Millisekundenpulsaren zu durchsuchen, auch in Doppelsternsystemen. Nur so ließen sich weite Parameterbereiche sehr fein durchkämmen", sagt Pletsch, Erstautor des in "Science" erschienenen Artikels. "Das neue Verfahren versetzt uns erstmals in die Lage, quasi blind nach Gammapulsaren zu suchen - bis hin zu sehr hohen Rotationsfrequenzen."

Die Wissenschafter analysierten die "Fermi"-Messungen auf dem Computercluster Atlas am AEI. "Wir haben Daten untersucht, die der Gammasatellit über einen Zeitraum von vier Jahren gesammelt hat. Bereits kurz nach Beginn der Analyse zeigte sich ein eindeutiges Signal in den Ergebnissen. Und was wir sahen, war sehr aufregend", sagt Pletsch.

390 Umdrehungen in einer Sekunde

PSR J1311-3430 dreht sich rund 390-mal in der Sekunde um die eigene Achse und sendet dabei strahlförmig Gammaphotonen ins All. Etwa bei jeder millionsten Umdrehung erreicht eines dieser Strahlungsquanten den Detektor an Bord von "Fermi". Das Gammasignal verrät den Astronomen aber auch vieles über den Begleiter des Pulsars: Die Bewegung im Doppelsternsystem moduliert die Ankunftszeiten der Photonen und erlaubt Rückschlüsse auf den Partnerstern. "Das Begleitobjekt ist klein und außergewöhnlich dicht", sagt AEI-Direktor Bruce Allen. "Es hat mindestens die achtfache Masse des Planeten Jupiter, weist aber nur maximal 60 Prozent seines Radius auf."

Aus diesen Informationen berechneten die Forscher die Dichte des Begleiters: Seine Materie ist im Mittel rund 30-mal enger gepackt als die der Sonne. Offenbar ist der Begleiter der kompakte Überrest eines Sterns, der bereits früher den Pulsar umrundete. Im Laufe seiner Entwicklung verlor er Materie an den Pulsar und beschleunigte dessen Drehung. Dabei kamen sich Pulsar und Begleiter immer näher.

"Schwarze Witwe" frisst ihren Begleiter auf

"Heute wird der zurückgebliebene Sternkern, der vermutlich vor allem aus Helium besteht, von der Strahlung des Pulsars sehr stark erhitzt und buchstäblich verdampft", sagt Holger Pletsch. Astronomen bezeichnen einen solchen Pulsar in Anlehnung an eine Spinnenart, bei der die Weibchen die kleineren Männchen nach der Paarung ins Jenseits befördern, als Schwarze Witwe. In ferner Zukunft könnte PSR J1311-3430 seinen Begleiter womöglich vollständig verdampfen und dann alleine durchs All ziehen.

Doch damit nicht genug: "Unsere Entdeckung ist nicht nur eine Premiere, sondern stellt zudem gleich mehrere neue Rekorde auf", erklärt Bruce Allen. Derzeit umrunden die Partner den gemeinsamen Schwerpunkt in nur 93 Minuten auf einer fast perfekt kreisförmigen Bahn. Das ist die kürzeste bekannte Bahnperiode aller Pulsare in Doppelsternsystemen. Und mit einem Abstand vom lediglich 1,4-Fachen der Erde-Mond-Entfernung ist es das engste bisher bekannte mit einen Pulsar. Der rast mit mindestens 13.000 Kilometern pro Stunde auf seiner Kreisbahn durchs All. Sein leichter Begleiter ist noch schneller unterwegs und bringt es sogar auf bis zu 2,8 Millionen Kilometer in der Stunde.

Holger Pletsch und seine Kollegen nahmen auch ältere Beobachtungen mit dem Radioteleskop in Green Bank in West Virginia unter die Lupe, konnten den flinken Pulsar hier jedoch nicht aufspüren. "Offenbar schirmt die vom Begleiter abgedampfte Materie einen Großteil der Radiowellen ab und macht den Pulsar für Radioteleskope möglicherweise sogar unsichtbar", sagt Lucas Guillemot vom Max-Planck-Institut für Radioastronomie in Bonn, Mitautor der Veröffentlichung. Die Wissenschafter planen bereits weitere Beobachtungen bei höheren Radiofrequenzen. So wollen sie unter anderem die genaue Entfernung des Objekts von der Erde ermitteln.

Möglicherweise nur Spitze des Eisbergs

Systeme wie der nun entdeckte Rekordpulsar bieten den Astronomen neue Einblicke in die bisher nur unvollständig verstandene Entwicklung sehr enger Doppelsternsysteme. PSR J1311-3430 könnte außerdem neues Licht auf die Entstehung der Gamma- und Radiostrahlung im starken Magnetfeld der Pulsare werfen. Möglicherweise ist er auch nur die Spitze des Eisbergs: Hinter weiteren nicht identifizierten Gammaquellen könnten sich ähnlich außergewöhnliche Systeme verbergen. 30 Jahre nach der Entdeckung des ersten Millisekundenpulsars im Radiobereich haben die Forscher am AEI mit ihrer Analysemethode nun eine neue Tür geöffnet, um diese schwer auffindbaren Himmelskörper leichter zu identifizieren. (red, derstandard.at, 27.10.2012)

Share if you care