Schwachstelle metallischer Gläser abgemildert

21. Juni 2010, 12:24
11 Postings

Deutsche Forscher erhöhen Formbarkeit des spröden Materials durch Ausnutzung von Formgedächtniskristallen

Dresden - Metallische Gläser sind Legierungen, die nicht aus regelmäßig geordneten Kristallen bestehen, sondern wie Gläser oder Flüssigkeiten eine regellose Atomstruktur haben. Diese für Metalle sehr ungewöhnliche Atomanordnung hat eine einzigartige Kombination physikalischer Eigenschaften zur Folge. Metallische Gläser sind im Allgemeinen härter, korrosionsbeständiger und fester als gewöhnliche Metalle. Die für die meisten Metalle charakteristische plastische Verformbarkeit, die eine Voraussetzung für das Schmieden und Walzen ist, fehlt den metallischen Gläsern jedoch: Sie sind spröde und brechen wie Fensterglas. Dies schränkt mögliche Anwendungen dieser neuen Materialklasse natürlich deutlich ein.

Forscher des Leibniz-Instituts für Festkörper- und Werkstoffforschung Dresden haben nun einen Mechanismus der Verformung aufgedeckt, der  metallische Gläser, die unter Zugbelastung stehen, weniger spröde und sie damit verformbar macht. Dazu haben sie Kupfer-Zirkon-Legierungen untersucht, die sich sowohl als kristalline Legierungen als auch als metallische Gläser herstellen lassen. In ihrem kristallinen Zustand haben diese Legierungen ein Formgedächtnis. Das heißt, dass sie sich an eine frühere Formgebung trotz nachfolgender Verformung scheinbar "erinnern" und die ursprüngliche Form wieder annehmen.

Diese Eigenschaft scheint auch Auswirkungen auf die Verformbarkeit im Glas-Zustand zu haben. Bei mechanischer Belastung scheiden sich in dem Glas Nanometer große Formgedächtniskristalle aus, die ihrerseits eine ausgeprägte Neigung zur Bildung sogenannter Verformungszwillinge haben. Die chemische Zusammensetzung der Nanokristalle unterscheidet sich nicht von der des Glases. Damit sind nur geringfügige atomare Umordnungen nötig, um das Glas zu kristallisieren. Die Zwillingsbildung wiederum ist Ausdruck des Formgedächtniseffekts, der auf kleinen Längenskalen bevorzugt über eine Scherverformung erfolgt. Beide Prozesse, die Bildung von Nanokristallen und die Bildung von Zwillingen, benötigen Energie, die aus der aufgewandten Verformungsenergie gewonnen wird. Damit kann das Entstehen von Mikrorissen verzögert werden, die das spröde Versagen des Materials bewirken. Als Resultat ergibt sich eine makroskopisch messbare plastische Dehnung bei gleichzeitiger Verfestigung des Materials. (red)

  • Metallisches Glas nach einem Zugversuch
    foto: ifw dresden

    Metallisches Glas nach einem Zugversuch

Share if you care.